READING TOYOTA ELECTRICAL WIRING DIAGRAMS
<table>
<thead>
<tr>
<th>SYMBOL(S)</th>
<th>TERM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEAKER</td>
<td></td>
</tr>
<tr>
<td>SWITCH, MANUAL</td>
<td>1. NORMALLY OPEN</td>
</tr>
<tr>
<td></td>
<td>2. NORMALLY CLOSED</td>
</tr>
<tr>
<td>SWITCH, DOUBLE-THROW</td>
<td></td>
</tr>
<tr>
<td>SWITCH, IGNITION</td>
<td></td>
</tr>
<tr>
<td>SWITCH, WIPER PARK</td>
<td></td>
</tr>
<tr>
<td>TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>WIRES</td>
<td>1. NOT CONNECTED</td>
</tr>
<tr>
<td></td>
<td>2. SPliced</td>
</tr>
<tr>
<td>RELAY</td>
<td></td>
</tr>
<tr>
<td>1. NORMALLY CLOSED</td>
<td></td>
</tr>
<tr>
<td>2. NORMALLY OPEN</td>
<td></td>
</tr>
<tr>
<td>RELAY, DOUBLE-THROW</td>
<td></td>
</tr>
<tr>
<td>RESISTOR, TAPPED</td>
<td></td>
</tr>
<tr>
<td>RESISTOR, WIPER</td>
<td></td>
</tr>
<tr>
<td>Rheostat</td>
<td></td>
</tr>
<tr>
<td>SENSOR</td>
<td></td>
</tr>
<tr>
<td>(Thermistor)</td>
<td></td>
</tr>
<tr>
<td>SENSOR, ANALOG-SPEED</td>
<td></td>
</tr>
<tr>
<td>SHORT PIN</td>
<td></td>
</tr>
<tr>
<td>SOLEROID</td>
<td></td>
</tr>
<tr>
<td>HEADLIGHTS</td>
<td></td>
</tr>
<tr>
<td>1. SINGLE FILAMENT</td>
<td></td>
</tr>
<tr>
<td>2. DOUBLE FILAMENT</td>
<td></td>
</tr>
<tr>
<td>HORN</td>
<td></td>
</tr>
<tr>
<td>IGNITION COIL</td>
<td></td>
</tr>
<tr>
<td>LIGHT</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>(Light Emitting Diode)</td>
</tr>
<tr>
<td>METER, ANALOG</td>
<td></td>
</tr>
<tr>
<td>METER, DIGITAL</td>
<td></td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
</tr>
<tr>
<td>BATTERY</td>
<td></td>
</tr>
<tr>
<td>CAPACITOR</td>
<td>(Condenser)</td>
</tr>
<tr>
<td>CIGARETTE LIGHTER</td>
<td></td>
</tr>
<tr>
<td>CIRCUIT BREAKER</td>
<td></td>
</tr>
<tr>
<td>DIODE</td>
<td></td>
</tr>
<tr>
<td>ZENER</td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTOR, IMA</td>
<td></td>
</tr>
<tr>
<td>FUSE</td>
<td></td>
</tr>
<tr>
<td>FUSE, FUSIBLE LINK</td>
<td></td>
</tr>
<tr>
<td>GROUND</td>
<td></td>
</tr>
</tbody>
</table>
1. Describe the meaning of the "C13" in diagram component Q.
2. Describe the meaning of the "G-W" in diagram component R.
3. Describe the meaning of the "2" in diagram component S.
4. Describe the meaning of the "S/D" in diagram component T.
5. Describe and identify the diagram component U.
6. Describe and identify the diagram component V.
7. Describe and identify the diagram component W.
8. Describe and identify the diagram component X.
9. Describe and identify the diagram component Y.
10. Describe and identify the diagram component Z.
1. Draw in GREEN the HORN CONTROL circuit from the battery to ground.
2. Draw in RED the HORN circuit from the battery to ground.
3. Draw in BLUE the part of the circuit that is common to both the control and load (horn) circuit.
1. How will the circuit be affected if there were an open at point X.
2. How will the circuit be affected if there were an open at point Y.
3. How will the circuit be affected if there were an open at point Z.
4. If the Horn Switch is OPEN, what voltage potential (Ground, Positive, or Electrically Dead) would you expect to find at point X, Y, & Z.
5. If the Horn Switch is CLOSED, what voltage potential (Ground, Positive, or Electrically Dead) would you expect to find at point X, Y, & Z.
SERVICE HINTS

DEFOGGER RELAY
- 5-3: CLOSED WITH IGNITION SW ON, DEFOGGER SW ON
- R 5 REAR WINDOW DEFOGGER SW
- 3-GROUND: APPROX. 120VOLTS WITH IGNITION SW AT ON POSITION
- 2-GROUND: ALWAYS CONTINUITY
- 3-6: CONTINUITY WITH DEFOGGER SW ON

PARTS LOCATION

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J 2</td>
<td>30</td>
<td>R14</td>
<td>A</td>
</tr>
<tr>
<td>R 5</td>
<td>30</td>
<td>R15</td>
<td>B</td>
</tr>
</tbody>
</table>

JUNCTION BLOCK AND WIRE HARNESS CONNECTOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>20</td>
<td>COWL WIRE AND J/B NO.1 (INSTRUMENT PANEL LEFT)</td>
</tr>
<tr>
<td>1H</td>
<td>20</td>
<td>FLOOR NO.1 WIRE AND J/B NO.1 (INSTRUMENT PANEL LEFT)</td>
</tr>
<tr>
<td>1N</td>
<td>20</td>
<td>COWL WIRE AND J/B NO.1 (INSTRUMENT PANEL LEFT)</td>
</tr>
</tbody>
</table>

GROUND POINTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E</td>
<td>36</td>
<td>LEFT KICK PANEL</td>
</tr>
<tr>
<td>1G</td>
<td>36</td>
<td>INSTRUMENT PANEL BRACE LH</td>
</tr>
<tr>
<td>1M</td>
<td>40</td>
<td>LEFT QUARTER PILLAR</td>
</tr>
</tbody>
</table>

SPlice POINTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>WIRE HARNESS WITH SPLICE POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>38</td>
<td>COWL WIRE</td>
</tr>
</tbody>
</table>

(HINT: SEE PAGE 7)
1. Draw in GREEN the DEFOGGER CONTROL circuit from the battery to ground.
2. Draw in RED the DEFOGGER circuit from the battery to ground.
3. Draw in BLUE the DEFOGGER LAMP circuit from the battery to ground.
1. With the Defogger Switch in the OFF position, what voltage would you expect to find at point V, W, X, Y, & Z?

2. With the Defogger Switch in the ON position, what voltage would you expect to find at point V, W, X, Y, & Z?

3. How will the circuit be affected if there is an open at point V?

4. How will the circuit be affected if there is an open at point W?

5. How will the circuit be affected if there is an open at point X?

6. How will the circuit be affected if there is an open at point Y?

7. How will the circuit be affected if there is an open at point Z?
1. The rear window defroster switch lights up, but the rear window defroster does not work. Trace in BLUE the area(s) that could be at fault.

2. The rear window defroster does not work. The defroster switch light does not light either. Trace in GREEN the area(s) that could be at fault.
B+ with key ON

B+ at all times

SERVICE HINTS

C 5 CIGARETTE LIGHTER
1-GROUND: APPROX. 12VOLTS WITH IGNITION SW AT ACC OR ON POSITION
2-GROUND: ALWAYS CONTINUITY

C 8 CLOCK
3-GROUND: ALWAYS 12VOLTS (POWER FOR CLOCK)
4-GROUND: APPROX. 12VOLTS WITH IGNITION SW AT ACC OR ON POSITION (POWER FOR INDICATION)
2-GROUND: APPROX. 12VOLTS WITH LIGHT CONTROL SW AT TAIL OR HEAD POSITION APPROX. 12VOLTS WITH ENGINE RUNNING AND PARKING BRAKE RELEASED (CANADA)
1-GROUND: ALWAYS CONTINUITY

FROM TAIL FUSE (USA)
FROM DAYTIME RUNNING LIGHT RELAY (CANADA)

A-5 Page 2
1. Trace in RED the part of the clock’s circuit that allows the clock’s display to light.

2. Trace in BLUE the part of the clock’s circuit that allows the Clock to keep the correct time when the engine is not running (Memory).

3. Trace in GREEN the part of the clock’s circuit that allows the Clock’s display to dim when the headlights are turned on.
1. How will the circuit be affected if there is an open at point X.

2. How will the circuit be affected if there is an open at point Y.

3. How will the circuit be affected if there is an open at point Z.
1. The clock display will not dim when the headlamps are turned on. Trace in RED the area(s) that could be at fault.

2. The clock loses its time (memory) each time the ignition switch is turned off and has to be reset with the correct time. Trace in BLUE the area(s) that could be at fault.

3. The clock display never light up. The cigarette lighter works. Trace in GREEN the area(s) that could be at fault.
1. RECIRC/FRESH CONTROL SERVO MOTOR OPERATION (FOR PUSH SWITCH TYPE)
 (SWITCHING FROM FRESH TO RECIRC)
 WITH THE IGNITION SW ON, CURRENT FROM THE GAUGE FUSE FLOWS TO TERMINAL 1 OF THE SERVO MOTOR. WHEN THE RECIRC SW IS TURNED ON, THE CURRENT FLOWS FROM SERVO MOTOR → TERMINAL 2 → TERMINAL 12 OF THE HEATER CONTROL ASSEMBLY → TERMINAL II7 → GROUND, THE MOTOR ROTATES AND THE DAMPER MOVES TO THE RECIRC SIDE. WHEN IT IS IN THE RECIRC POSITION, THE CIRCUIT IS CUT INSIDE THE SERVO MOTOR AND THE DAMPER STOPS IN THAT POSITION.
 WITH THE CIRCUIT FOR THE INDICATOR LIGHT, CURRENT FLOWS FROM THE GAUGE FUSE → TERMINAL II7 OF THE HEATER CONTROL ASSEMBLY → INDICATOR LIGHT → TERMINAL II7 → GROUND AND THE INDICATOR LIGHT CONTINUES TO LIGHT UP WHILE THE RECIRC SW IS ON.
 (SWITCHING FROM RECIRC TO FRESH)

2. OPERATION OF THE AIR VENT MODE CONTROL SERVO MOTOR (FOR PUSH SWITCH TYPE)
 (SWITCHING FROM FACE TO BI-LEVEL)
 WHEN THE DAMPER COMES TO THE BI-LEVEL POSITION, A SIGNAL THAT THE GROUND CIRCUIT IS CUT IS INPUT TO TERMINAL D11 OF THE AMPER, AND AMPER OPERATION CAUSES THE SERVO MOTOR TO STOP ROTATING AND THE DAMPER TO STAY IN POSITION.
 (SWITCHING TO OTHER MODE POSITIONS)
 WHEN SWITCHING THE DAMPER FROM FACE TOWARDS OFF, AS EXPLAINED BEFORE, A GROUND SIGNAL IS INPUT TO TERMINAL D11 OF THE AMPER AND A NON-GROUND SIGNAL IS INPUT TO TERMINAL D10 SO THAT CURRENT FLOWS FROM TERMINAL D5 → SERVO MOTOR → TERMINAL D4, MOVING THE DAMPER TO THE DESIRED POSITION.
 WHEN SWITCHING THE DAMPER IN THE OPPOSITE DIRECTION FROM DEF TOWARDS FACE, A GROUND SIGNAL IS INPUT TO TERMINAL D10 OF THE AMPER AND A NON-GROUND SIGNAL IS INPUT TO TERMINAL D11 SO THAT THE CURRENT FLOWS FROM TERMINAL D4 → SERVO MOTOR → TERMINAL D5, CAUSING THE SERVO MOTOR TO ROTATE IN REVERSE AND MOVING THE DAMPER TO THE DESIRED POSITION.

3. OPERATION OF THE AIR MIX CONTROL SERVO MOTOR (FOR PUSH SWITCH TYPE)
 (SWITCHING FROM WARM TO COOL)
 WHEN THE TEMPERATURE CONTROL KNOB IS SWITCHED FROM WARM POSITION TO COOL POSITION, THE RESISTANCE INSIDE THE HEATER CONTROL ASSEMBLY BECOMES GREATER THAN THE RESISTANCE INSIDE THE SERVO MOTOR. THE SIGNAL AT THIS TIME IS INPUT TO THE SYSTEM AMPER, CAUSING THE AMPER TO OPERATE.
 CURRENT FLOWS FROM TERMINAL D8 OF THE AMPER → SERVO MOTOR → TERMINAL D9 → GROUND, CHANGING THE DAMPER FROM WARM TO COOL POSITION. WHEN THE RESPECTIVE RESISTANCES ARE THE SAME VALUE, THE SERVO MOTOR STOP.
 (SWITCHING FROM COOL TO WARM)
 WHEN THE TEMPERATURE CONTROL KNOB IS SWITCHED FROM COOL POSITION TO WARM POSITION, THE RESISTANCE INSIDE THE HEATER CONTROL ASSEMBLY BECOMES LESS THAN THE RESISTANCE INSIDE THE SERVO MOTOR. THE SIGNAL AT THIS TIME IS INPUT TO THE SYSTEM AMPER, CAUSING THE AMPER TO OPERATE.
 CURRENT FLOWS FROM TERMINAL D9 OF THE AMPER → SERVO MOTOR → TERMINAL D8 → GROUND, CHANGING THE DAMPER FROM COOL TO WARM POSITION. WHEN THE RESPECTIVE RESISTANCES ARE THE SAME VALUE, THE SERVO MOTOR STOPS.

4. RADIATOR FAN AND CONDENSER FAN OPERATION
 * LOW SPEED OPERATION
 WHEN THE A/C MAGNET CLUTCH IS TURNED ON DURING A/C OPERATION, CURRENT FROM THE A/C FUSE FLOWS THROUGH TERMINAL 1 OF THE A/C MAGNET CLUTCH RELAY → TERMINAL 2 → TERMINAL 1 OF THE CONDENSER FAN RELAY NO. 3 → TERMINAL 3 → GROUND, ACTIVATING RELAY NO. 3. THEN THE CURRENT APPLIED TO TERMINAL 2 OF RELAY NO. 3 FLOWS THROUGH TERMINAL 4 → TERMINAL 1 OF THE RADIATOR FAN MOTOR → TERMINAL 2 → GROUND. SINCE THE CONDENSER AND RADIATOR FAN MOTORS ARE CONNECTED IN SERIES, BOTH FANS ROTATE AT LOW SPEED.
SERVICE HINTS

RADIATOR FAN RELAY NO.1
4-3: OPEN WITH IGNITION SW ON, A/C HIGH PRESSURE SW ON AND WATER TEMP. SW ON

A/C FAN RELAY NO.2
1-2: 3-CLOSED WITH IGNITION SW OFF OR A/C HIGH PRESSURE SW OFF OR WATER TEMP. SW OFF
2-3: 4-CLOSED WITH IGNITION SW ON, A/C HIGH PRESSURE SW ON AND WATER TEMP. SW ON

A/C FAN RELAY NO.3
2-2: 4-CLOSED WITH IGNITION SW ON AND MAGNET CLUTCH ON

HEATER RELAY
1-4: 5-CLOSED WITH IGNITION SW ON AND BLOWER SW ON

A/C HIGH PRESSURE SW (FOR RADIATOR FAN)
1-2: OPEN ABOVE 18KGC/M² (256PSI, 1765KPA)
CLOSED BELOW 14KGC/M² (199PSI, 1373KPA)

A/C WATER TEMP. SW (FOR RADIATOR FAN)
1-GROUND: OPEN ABOVE 90°C (194°F)
CLOSED BELOW 83°C (181°F)

A/C DUAL PRESSURE SW
1-2: OPEN WITH PRESSURE LESS THAN 2.1KGC/M² (30PSI, 206KPA) OR ABOVE 27KGC/M² (384PSI, 2648KPA)

A/C IDLE-UP VSV
1-2: APPROX. 40°

A/C ACCELERATION CUT AMPLIFIER
3-GROUND: APPROX. 12VOLTS FOR 3 SECONDS WITH THROTTLE VALVE OPENING ABOVE 80% AND VEHICLE SPEED BELOW 25KM/H (15.5MPH)

A/C THERMISTOR
APPROX. 1.5KΩ AT 25°C (77°F)

BLOWER RESISTOR
1-2: APPROX. 1.5Ω
2-4: APPROX. 0.8Ω
3-4: APPROX. 0.4Ω

PARTS LOCATION

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
<th>CODE</th>
<th>SEE PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A8</td>
<td>25</td>
<td>H</td>
<td>A11</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>R1</td>
<td>25</td>
<td>I</td>
<td>A19</td>
<td>25(FWD)</td>
</tr>
<tr>
<td>C</td>
<td>A10</td>
<td>25</td>
<td>I</td>
<td>A20</td>
<td>28(ALL-TRAC/4WD)</td>
</tr>
<tr>
<td>D</td>
<td>A13</td>
<td>25</td>
<td>J</td>
<td>A18</td>
<td>28</td>
</tr>
<tr>
<td>E</td>
<td>A12</td>
<td>25</td>
<td>K</td>
<td>T3</td>
<td>28</td>
</tr>
<tr>
<td>F</td>
<td>A43</td>
<td>25(CANADA)</td>
<td>L</td>
<td>A21</td>
<td>28</td>
</tr>
<tr>
<td>G</td>
<td>A9</td>
<td>25</td>
<td>M</td>
<td>A14</td>
<td>25(ALL-TRAC/4WD)</td>
</tr>
</tbody>
</table>

RELAY BLOCKS

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>RELAY BLOCKS (RELAY BLOCK LOCATION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>R/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>R/B NO.4 (RIGHT KICK PANEL)</td>
</tr>
</tbody>
</table>

JUNCTION BLOCK AND WIRE HARNESS CONNECTOR

<table>
<thead>
<tr>
<th>CODE</th>
<th>SEE PAGE</th>
<th>JUNCTION BLOCK AND WIRE HARNESS (CONNECTOR LOCATION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>18</td>
<td>COWL WIRE AND J/B NO.1 (LEFT KICK PANEL)</td>
</tr>
<tr>
<td>1N</td>
<td>20</td>
<td>ENGINE ROOM MAIN WIRE AND J/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
<tr>
<td>2A</td>
<td>20</td>
<td>ENGINE WIRE AND J/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
<tr>
<td>2C</td>
<td>20</td>
<td>ENGINE WIRE AND J/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
<tr>
<td>2E</td>
<td>20</td>
<td>ENGINE WIRE AND J/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
<tr>
<td>2G</td>
<td>20</td>
<td>ENGINE WIRE AND J/B NO.2 (ENGINE COMPARTMENT LEFT)</td>
</tr>
</tbody>
</table>
1. Draw in RED the fan circuit with the FANS in HIGH SPEED operation.

2. Draw in Blue the fan circuit with the FANS in LOW SPEED operation.

3. In HIGH SPEED FAN MODE what is the state of each of the three relays. The air conditioning is off.
 Relay #1: ON / OFF
 Relay #2: ON / OFF
 Relay #3: ON / OFF

4. In LOW SPEED FAN MODE what is the state of each of the three relays.
 Relay #1: ON / OFF
 Relay #2: ON / OFF
 Relay #3: ON / OFF

5. How or when is relay #3 energized?
 __
 __

6. How or when is relay #2 energized?
 __
 __
 __

7. What will happen to the Radiator Fan and the Radiator Fan Relay #1 when the Water Temp Sensor senses 199°F?
 __
 __
 __
8. With the A/C ON, the HIGH PRESSURE SWITCH senses a pressure of 300 psi. What is the status of:
 Relay #1: ON / OFF
 Relay #2: ON / OFF
 Relay #3: ON / OFF

9. With the WATER TEMP SWITCH sensing a temperature of 200°F. The A/C is off. What is the status of:
 Relay #1: ON / OFF
 Relay #2: ON / OFF
 Relay #3: ON / OFF

10. With the A/C is on, Water Temp below 180°F, and A/C High pressure sensing 225 PSI. Which fan(s) is on and in what speed?

11. If a break occurred at point ‘X’ in the circuit, what would the result be.

12. What controls or inputs will cause the fans to run in HIGH SPEED MODE.

13. Explain the conditions that cause the fans to run in LOW SPEED MODE.
14. If a break occurred at point 'V' in the circuit, what would the result be.

__
__
__

15. If a break occurred at point 'X' in the circuit, what would the result be.

__
__
__

16. If a break occurred at point 'Y' in the circuit, what would the result be.

__
__
__

17. If a break occurred at point 'Z' in the circuit, what would the result be.

__
__
__
1. Both FANS will not work in LOW SPEED. The Fans only work in HIGH SPEED. Trace in RED the area(s) that could be at fault.

2. The RADIATOR FAN will not work in HIGH SPEED, however it will work in LOW SPEED when the AC switch is turned on. Trace in BLUE the area(s) that could be at fault.

3. The CONDENSER FAN works all the time and will not shut off. The RADIATOR FAN works only in HIGH SPEED but not in low speed. Trace in GREEN the area(s) that could be at fault.

4. The FANS will not turn on when the engine overheats. The fans work correctly in the other positions. Trace in Orange the area(s) that could be at fault.
1. Draw in RED the Blower CONTROL CIRCUIT with the blower motor in operation.

2. Draw in BLUE the BLOWER CIRCUIT with the BLOWER in the LOW SPEED position.

3. Draw in GREEN the BLOWER CIRCUIT with the BLOWER in M1 SPEED position.

4. Draw in ORANGE the BLOWER CIRCUIT with the BLOWER in HIGH SPEED position.

5. Explain the difference between the HI SPEED circuit and ALL OTHER SPEEDS.

6. How does the Heater Relay remain energized while different blower positions are selected.

7. How does the Heater Relay remain energized while different blower positions are selected.
8. If a break occurred at point 'V' in the circuit, what would the result be.

9. If a break occurred at point 'X' in the circuit, what would the result be.

10. If a break occurred at point 'Y' in the circuit, what would the result be.

11. If a break occurred at point 'Z' in the circuit, what would the result be.

1. Only the HIGH SPEED blower works. None of the other blower speeds work. Trace in RED the area(s) that could be at fault.

2. The LOW SPEED blower does not work. All other speeds work correctly. Trace in BLUE the area(s) that could be at fault.

3. The blower does not work. A "click" from the relay is heard when the blower switch is placed any one of the blower speed positions. Trace in GREEN the area(s) that could be at fault.

4. When the blower switch is placed into the M2 (medium 2). The fan operates in low speed rather than M2. All other blower speed positions operate correctly. Trace in ORANGE the area(s) that could be at fault.